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1. Introduction

The apparition of comet P/Halley during 1985 and 1986 permitted extensive

observations of all types to be made. One important technique which was available only
shortly before this apparition was the ability to obtain CCD images of the coma using
various filters. This project deals with the analysis of selected CCD images of the coma
of comet P/Halley which were taken using specially designed filters that isolate regions
of a comet's spectrum such that only sunlight which has been scattered by the dust in the
coma is recorded. The data addressed here are subsets of two larger datasets which also
contain images taken with filters designed to pass regions of the spectrum which in
addition to dust continuum include the spectral emissions of certain gas species and
spectra. One of the sets of CCD images were taken with the 61-inch Wyeth telescope at
the Oak Ridge Observatory by Dr. R.E. McCrosky of the Center for
Astrophysics/Smithsonian Astrophysical Observatory. The second set of data were taken
with the 61-inch telescope on Mt. Lemmon by Dr. Uwe Fink and co-workers at the Lunar
and Planetary Laboratory of the University of Arizona. Since the object of project is the
study of the dust distribution as evidenced in so-called "continuum” images the second
complementary set of data were linear cut spatial profiles of dust extracted from long-slit
CCD spectrograms of comet Halley.
- = The modeling analysis objective of this project is to make use of the skills acquired
" in the development of Monte Carlo particle trajectory models for the distributions of gas
species in cometary comae (Combi and Smyth 1988 a&b) as a basis for a new dust coma
model. This model will includes a self-consistent picture of the time-dependent dusty-gas
dynamics of the inner coma and the three-dimensional time-dependent trajectories of the
dust particles under the influence of solar gravity and solar radiation pressure in the outer
coma. Our purpose is to use this model as a tool to analyze selected images from the two
sets of data with the hope that we can help to understand the effects of a number of
important processes on the spatial morphology of the observed dust coma. The study will
proceed much in the same way as our study of the spatially extended hydrogen coma
(Combi and Smyth 1988b) where we were able to understand the spatial morphology of
the Lyman-alpha coma in terms of the partial thermalization of the hot H atoms produced
by the photodissociation of cometary H20 and OH.  +- J{}

The processes of importance to the observed dust coma include:

(1) the dust particle size distribution function,
(2) the terminal velocities of various sized dust particles in the inner coma,



(3) the radiation scattering properties of dust particles, which are important both
in terms of the observed scattered radiation and the radiation pressure
acceleration on dust particles,

(4) the fragmentation and/or vaporization of dust particles, and

(5) the relative importance of CHON and silicate dust particles as they contribute
both to the dusty-gasdynamics in the inner coma (that produce the dust particle
terminal velocities) and to the observed spatial morphology of the outer dust
coma.

(6) the time and direction dependence of the source of dust.

In work completed to this point in time we have made substantial progress in
addressing directly points 1-4 and 6 At this time we find ourselves just short of
describing our results in two papers: one describing the dust model and application to
dust coma images, and a second using that model to study time-variable sunward and
antisunward spatial profiles of dust in comet Halley. Preliminary results, summarizing
both aspects of the work were presented at the 1992 meeting of the Division for Planetary
Sciences held in Munich, Germany (Combi and Fink 1992). A copy of the talk is
attached as an appendix to this report. This work js to continue as part of a new 3-year
effort which has been tentatively approved by the Planetary Atmospheres program.

I1. Development of the Dust Model

The basic framework of the dust model lay in the core of the hydrogen coma model
discussed in detail in the papers by Combi and Smyth (1988 a& b). Itis a fully 3-D tme-
dependent Monte Carlo particle trajectory model that builds up an entire coma by tracing
out the trajectories of many individual particles. For the published gas coma model the
particles are individual atoms, radicals and molecules; for the dust model the particles are
obviously individual dust particles. Recently Jewitt and Luu (1990) have published the
results of a Monte Carlo dust coma model applied to observations of Comet P/Tempel 2.
However, their model is steady-state, and spherical. Ellis and Neff (1991) have recently
developed a numerical dust model for neutral or charged dust for comparison with dust
experiments on Vega 1 and 2 and Giotto. However, their results state that the dust
particle terminal velocities required to match their model to data are 1.7 times the values
implied by conventionally dusty gasdynamics. Unfortunately, the resulting dust
velocities would exceed the velocity of the gas that is accelerating the dust! Clearly this
is not possible.



The standard dust coma treatment goes back to the pioneering work of Finson and
Probstein (1968) which considers the dust to consist of a population of particles having a
variation of sizes with a size distribution determined by some power law in particle
diameter. The particles are considered to have a constant density, p(a) = po, independent
of particle size,. The light scattering properties which are needed not only to describe the
observed scattered radiation but also to calculate the radiation pressure acceleration on
each particle size are considered to be simply proportional to the geometric cross section
of the particle. The latter two conditions implying that the light scattering efficiency,
Qscat, and the radiation pressure efficiency, Nrp, both equal unity.

From polarization measurements of Comet Halley (Mukai, et al., 1987) it is clear
that cometary grains at least share the optical properties of a material called astronomical
silicate. Hoban, et al. (1989) have analyzed dust images of comet Halley in this context,
however not with a detailed coma model like is that under development for this project.
Although we certainly expect that many real cometary grains are not spherical but may be
quite irregular, the adoption of Mie theory which assumes spherical particles has proven
to be quite useful by other investigators. Figure 1 shows a plot of the results of Mie
calculations by Hoban et al. which we have adopted for the light scattering properties in
our model. .

In Figure 2 are shown the results of Hellmich and Schwehm (1983) for the
radiation pressure efficiency as a function of size for dark dielectric material which is
believed to be indicative of cometary dust particle. Notice that the radiation pressure
efficiency drops precipitously for véry small particles and peaks for particles who sizes
are in the range of the wavelength of the peak of the solar radiation. We have adopted
this as the standard radiation pressure efficiency.

Theréfore, for this work we have begun by adopting the optical properties of dark
absorbing spheres. Probably the most uncertain aspect of this problem is not the optical
properties of the dust grains but their densities. Although it has been traditional to
assume densitiesof 1to3 g cm-3 it is likely that cometary grains are porous aggregates
and therefore have a density which decreases with increasing radius. Lamy et al. (1987)
have suggested a dust density of the form

p(a) = 2.2 -1.4 a/(ag-a).

where a = particle radius and ag = 2 microns. We have chosen this as a starting point for

our studies.
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Figure 1. Single Particle Mie Scattering Ffficiency as a Function of Particle
Radius. The values of Qscat as calculated by Hoban et al. (1989) for the two IAU
continuum filters are plotted. These calculations have been adopted in out dust coma
model.
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Figure 2. Radiation Pressure Efficiency, npr, for Prospective Cometary Grains.
The values of npr calculated by Hellmich and Schwehm (1983) are shown for
nonabsorbing (olivine) and absorbing (magnetite) grains. We have adopted the curve for
the absorbing magnetite grains in our model. :



Probstein (1968) lay the groundwork for all subsequent treatments of dusty
gasdynamics in terms of his model that is included in full hydrodynamic calculations
(Wallis 1982; Marconi and Mendis 1983; Gombosi et al. 1986). An empirical method
outlined in papers by Sekanina (1981) and Sekanina and Larson (1984) approximates the
results of a full hydrodynamic calculation in a simple parametrized form which gives the
dust particle terminal velocity given the dust-to-gas mass ratio, the gas production rate
and the particle size and mass. It provides an excellent approximation to the results
produced by the full hydrodynamics. We have verified this by reproducing the results of
the Halley dust distribution in the paper by Gombosi (1986).

The global dust model proceeds by picking a certain number of dust particles to
run in the whole simulation. Twenty-eight dust particle sizes whose radii are distributed
logarithmically, following those of Gombosi (1986). The distribution of dust particles of
a given size are taken from the Hanner-type distribution. For Halley Gombosi (1986)
gives the values of the appropriate parameters in the expression which best describes the
in situ data. The scattered radiation which contributes to the observed brightness is
calculated from the Qscat in Figure 1, the dust particle cross section, 4ma2, and the
abundance weight from the Hanner expression. Following Hoban et al. the model
routinely generate maps at wavelengths corresponding to the two IAU continuum filters
at 4845 A and 6840 A. Figure 5, which will be discussed in the next section of this report
in more detail, shows an example of the 2-D coma map produced by the model.

Individual trajectories can be weighted according to a prescribed time dependence,
either the long term secular heliocentric distance variation, or more interesting the short
time periodic variations which have been observed in comets Halley and more recently in
comet Levy that indicate the effect of the illumination of active areas as the nucleus
rotates. For the secular variation of comet Halley we have adopted the power laws found
by Schleicher (1991 private communication) of r -2.3 for pre-perihelion and r -1.9 for
post-perihelion realizing that these may ultimately have to be adjusted to account for
heliocentric distance variation in the overall dust terminal velocities. Individual
trajectories can also be included (or not included) in order to produce images of dust
comae produced from restricted areas on the nucleus such as sunward-hemisphere
emission, for example. Subsequent sections of this report will illustrate this capability
also.



II1. Dust Coma Observations

Two examples of dust coma images taken by Dr. R.E. McCrosky are shown in
Figures 3 and 4. Figure 1 shows the dust coma of comet P/Halley taken with the IAU
filter at 4840 A. Figure 2 shows the dust coma of comet P/Halley taken with the IAU
filter at 6840 A. One possible problem with the 4840 A IAU filter suggested by Hoban et
al. (1989) is that the wavelength range covered includes not just continuum but is
contaminated by a small amount C? (1-0)' emission. However, comparison of these two
images shows only minor differences which can not be accounted for by the addition of
C2 emission to the 4840 A image.
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Figure 3. Image of Comet P/Halley at 4840 A. Shown in a contour plot of an
image of comet P/Halley taken with the 61-inch Wyeth telescope at Oak Ridge
Observatory on December 30, 1985. The image has been flat-field corrected and
background subtracted.



a 60

Figure 4. Image of Comet P/Halley at 6840 A. Shown is a contour plot of an image of
Comet P/Halley taken with the 61-inch Wyeth telescope at Oak Ridge Observatory on
December 30, 1985. The image has been flat-field corrected and background subtracted.

An interesting and important set of data has become available relating to the
distribution of dust in comet P/Halley. As part of the ongoing collaboration with Dr.
Uwe Fink of the University of Arizona, we have analyzed spatial profiles (generally
sunward and antisunward) of the gas species C2, CN, NH2 and O(lD) in Comet Halley
with a time-dependent model which accounts for the 7.4-day periodic variation of the gas
production rates (Schleicher et al. 1990). The involvement of this PI for the gas coma
work is funded under a separate grant (NAGW-1907). In addition to the gas species data
there exists the corresponding spatial profiles of the dust continuum which were actually
generated in the process of production of the gas species profiles, since the dust



continuum must be subtracted in order to obtain gas species profiles. The interesting
aspect of these data are that sets of adjacent-day observations were made several times
during the 1985-1986 apparition of the comet: December 8 and 9, January 10, 11, and 12,
March 1 and 2, and April 14 and 15. The most interesting set is that in April where the
Schleicher et al. 'light curve' was continuously observed with excellent time coverage.
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Figure 5. Spatial Profile of Dust Continuum at 6520 A on April 14.3, 1986. The
sunward (+'s) and antisunward (o's) spatial profiles of dust continuum in Comet P/Halley
as derived from long-slit spectra taken with the 61-inch telescope at Mt. Lemmon on
April 14.3, 1986. The spectrum was recorded on the downward part of the gas
production variation (Schleicher et al., 1990) the signature of the high production rate is
seen at the outer part produced roughly from one-half to one day before the observation
time can be easily seen as the 'bump’ outside about 10,000km.

On April 14.3 the comet was on the downward part of the production rate variation
whereas by April 15.3 it had passed the minimum and was on the upward part of the
curve. Comparison of the sunward and antisunward spatial profiles as shown in Figures 5



and 6 clearly shows evidence of just this type of variation. The portion of the April 14.3
profile outside of 10,000 km clearly shows the effect of the raised production rate at the
previous maximum which occurred from one-half to one and one-half days previous to
the observation. The April 15.3 profile on the other hand clearly shows the turning-on of
the sunward ejecting dust, and also shows that the ‘bump’ seen on April 14.3 has moved

out past the end.
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Figure 6. Spatial Profile of Dust Continuum at 6520 A on April 15.3, 1986. The
sunward (+'s) and antisunward (o's) spatial profiles of dust continuum in Comet P/Halley
as derived from long-slit spectra taken with the 61-inch telescope at Mt. Lemmon on
April 15.3, 1986. The spectrum was recorded on the upward part of the gas production
variation (Schleicher et al., 1990) so the high production rate seen at the outer part of the
April 14.3 profile seen in Figure 3 has since moved out of the inner coma. The turning-
on of the next active region can be seen in the inner part of the sunward profile.
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The use of a time-dependent model for the dust production based on the knowledge
of the gas production source in combination with the observed profiles helps separate out
the effects of production rate variations from dust particle decay and provide hard
evidence for the correctness of the variation of dust particle initial (so-called terminal)
velocities. In the next section is a discussion of the analysis of the March 1.5 and 2.5
spatial profiles. Analysis of the April 14/15 set will proceed during the next grant year.

IV. Time-Dependent Aspherical Modeling of Halley's Dust Coma

This portion of the project involves the analysis of spatial profiles of the dust
continuum which were generated in the process of construction of the gas species profiles
of the gas species C2, CN, NH7 and O(ID) in Comet Halley (Fink, Combi and DiSanti,
1991). Explicit time-dependence has been incorporated into the dust model as a
parametrized version of the 7.4-day periodic variation of the gas production rates
(Schleicher et al. 1990). The interesting aspect of these data are that sets of adjacent-day
observations were made several times during the 1985-1986 apparition of the comet:
December 8 and 9, January 10, 11, and 12, March 1 and 2, and April 14 and 15.

On March 1 the comet was on the downward part of the production rate variation
whereas by March 2 it had passed the minimum and was on the upward part of the curve.
At the top of Figure 7a the observed sunward and antisunward profiles have been
averaged to approximately "average-out” the effects of day/night asymmetry and
radiation pressure. Below this is the result of the model with the 7.4-day period
variations corresponding to the same phase lag we found for the gas species (Combi and
Fink 1993). It is clear that dust terminal velocities for the important "optical size range"
obtained from standard dusty-gas drag calculations provides approximately the correct
propagation speed for the varying production rate signal.

In Figures 7b and 7c the actual sunward and antisunward profiles are shown and
compared with models where a day/night dust production asymmetry has been included.
For this calculation the asymmetry was incorporated as separate weightings for the
dayside and nightside hemispheres. What is interesting is that a larger asymmetry (4:1) is
required for the March 2 profile which is produced primarily near the peak of the
variation as opposed to the March 1 profile (1.2:1) which is produced closer to the
minimum. It is clear from this result that the dust emission is a complex function of both
time and spatial vector direction since the day/night asymmetry clearly varies with time,
and that a substantial nightside ejection is also required in agreement with the close-up
Giotto images (Keller et al. 1986). It should also be mentioned here that these are

11
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preliminary results and that neither the dust size distribution nor the optical properties
(e.g. Qscat) have been optimized to "fit" the sunward/antisunward radiation pressure
asymmetry. It is clear that the radiation pressure distortion is larger in the data and the
slope steeper (possible fragmentation?) than the model, although the qualitative
agreement is good.

Figure 8a shows the 2-D modeled images of the 6840 A coma corresponding to the
spatial profiles discussed above. The results discussed in this section have been
presented at the 1992 Division for Planetary Sciences Meeting in Munich, Germany
(Combi and Fink 1992).

V. Modeling Images of the Coma in Two Dimensions

The other (actually the main) part of this study is to try to understand the observed
2-D morphology of the dust coma as seen in filtered CCD images of comets (in particular
comet Halley) in terms of the detailed physics of dust particles and their ejection from the
inner fluid coma of the comet. Although the reproduction of 1-D spatial profiles is
encouraging in terms of the average value of the dust terminal velocities and their average
radiation pressure acceleration, the true test comes when trying to reproduce full 2-D
images. Keller and co-workers (e.g. see Keller and Meier 1976) demonstrated the
importance of analyzing 2-D images of the hydrogen Lyman-alpha coma in a series of
papers published over a number of years. Hydrogen atoms, like dust particles, are subject
to a strong antisunwardly directed radiation pressure acceleration. The work of Keller
showed that the speed distribution of H atoms leaving the inner coma was of the utmost
importance in producing the observed shapes of the isophotes in the outer coma.

The principle goes back to a number of old papers beginning with Eddington's
(1910) original fountain model, and culminated with the papers by Wallace and Miller
(1958) and Haser (1966). For a point source of particles ejected at a single speed and
subjected to a single antisunwardly directed acceleration, the "coma” which results
appears to have circular isophotes which terminate discontinuously at the projected
boundary of the paraboloid of rotation whose vertex is located at a distance of v2/2b
where v is the outflow speed and b is the acceleration. The brightness (which is
proportional to the column density) of the circular isophotes is independent of the viewers
angle with respect to the sun-comet line, although the projected shape of the paraboloid
certainly is.

Keller's work showed that the effective velocity distribution of H atoms in a bright
comet like Kohoutek had to be composed of a broad distribution of speeds ranging from
1-2 km/s up to speeds exceeding 20 kmy/s. It was the later papers by Combi and Smyth

13
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(1988b) and Smyth, Combi and Stewart (1991) which showed that a velocity distribution
similar to but much more irregular than the 3 Maxwellians in Keller and Meier (1976) is a
natural by-product of water and OH photodissociation in combination with partial
collisional thermalization of H atoms before they exit the inner coma.

Figures 2 and 3 are quite representative of isophote maps of the dust comae of
many comets which have been reproduced from photographic plates. Curiously, the
isophotes almost always look rather elongated, being more reminiscent of the H Lyman-
alpha isophotes and not as much like more circular ones which the dust models produces.
This is because of the one-to-one-to relationship between the dust particle size, terminal
velocity and radiation pressure acceleration. Although in our formulation this
relationship is complicated by the variable dust density and the non-linear relationship
from the gasdynamic drag, it is still the case that for the range of sizes of dust particles
which dominate the in the visual images that the value of v2/2b is only a weakly variable
quantity. This is analogous to the fact that the critical parameter in the standard Finson-
Probstein method is not the particle size but the parameter (pd), the product of the density
and diameter. The cross section of a dust particle increases as the square of the radius (or
diameter) whereas its mass increases as the cube. Both the terminal velocity (owing to
gas drag) and the radiation pressure acceleration are larger for smaller particles, therefore
the shapes of the isophote distributions over a fairly wide range of particle sizes do not
vary very much.

In order to produce the elongated isophotes such as are seen in the H coma one
requires a range of effective radial outflow speeds but a single value for the radiation

pressure acceleration. However, it is clear from our "more physically realistic” dust

models that we do not get elongated isophotes. Like the H atom coma we require a wide
range of terminal velocities for particles of a certain size rather than just the one-to-one-
to-one relationship between particle size, particle velocity and particle radiation pressure
acceleration.

A reasonable solution to this is that as dust particles are accelerated by gasdynamic
drag in the inner 100-300 km of the coma that dust particle fragmentation is a dominant
process. As particles fragment they produce many smaller pieces, however the gas-drag
acceleration is the largest only very close to the nucleus. Therefore small particles
produced by fragmentation of larger particles farther from the nucleus will be traveling at
smaller velocities than small particles produced near the nucleus where the gas-drag is
large.

Particle fragmentation is certainly not a new idea. It has been suggested as a
mechanism to explain radial profiles which vary more steeply than the 1/r expected for a

15
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point source. It has also been suggested more recently as a possible explanation for the
radial profiles extracted from the Giotto images of the very inner coma comet Halley.
Where the arguments here differ is that we contend that particle fragmentation in the
acceleration region is a common property of all comets which are moderately productive.

It is reasonable to speculate that cometary dust particles themselves are very fragile
and that the gasdynamic drag in addition to accelerating the particles also fragments
them. This fragmentation would occur only in the very innermost coma. If the
fragmentation simply breaks up large particles into smaller ones then the process will
increase the effect surface area per unit mass, explaining the flattened dust profiles in the
Giotto images. Since we can calculated the forces on dust particles from the gas drag
then this sets an order of magnitude as to the bulk strength of the aggregates of cometary
dust.

The modeling difficulty presented by this result means that the dust particle size
distributions inferred by Finson-Probstein analysis may be totally wrong because the one-
to-one-to-one relationship between size, velocity and acceleration no longer holds. Also
the dust particle size distribution itself seen at some distance from the nucleus is a by-
product of the acceleration/fragmentation by gasdynamic drag in the first few tens of km
from the nucleus.

To test our hypothesis of dust fragmentation we have run a heuristic dust size-
velocity distribution. We start with the normal Hanner type distribution we used above to
describe the original dust particle distribution and calculate its terminal velocity from the
Sekanina approximation. Then we redistribute each particle over all possible fragment
sizes. In the realm of Monte Carlo we simply choose some particle size smaller than the
original size for the purpose of calculating the radiation pressure acceleration. A
reasonable and simple choice for the redistribution function is as follows. If "ao" is the

. original particle size (for the purpose of calculating the terminal velocity) the fragmented

size is calculated from
a=agRjP

where Ri = a random number on the interval from 0 to 1, and
p = an adjustable parameter.

In the absence of a fundamental model for the original dust-size distribution and

the dust fragmentation process this form has an adjustable parameter, p, which describes
in some reasonable way the redistribution by the fragmentation of original large particles.
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The choice of Hanner-type distribution is in some sense ad hoc especially when
combined with this heuristic redistribution function.

Figure 9a shows a contour plot of an image of comet Halley obtained at the Oak
Ridge Observatory by R.E. McCrosky. Figures 9 b and ¢ show two models for the
original Hanner-type distribution which yields the more circular isophotes as well as that
obtained using the fragmentation/redistribution model with the parameter p taken to be
1.5. This value yields a reasonable match to the overall radiation pressure distortion as
well as to the shapes of the elongated isophotes.

Although this is far from a unique solution it nonetheless demonstrates that there
clearly cannot be a one-to-one-to-one relationship between particle size, velocity and
radiation pressure acceleration. Furthermore, the production of slower small particles by
fragmentation of originally larger particles make sense physically and is a reasonable
solution to the distribution of dust in the innermost coma of comet Halley as seen in the
Giotto images. Therefore, although the details of the size-velocity relation in the
heuristic model shown here is probably not exactly correct it does contain the essential
elements of the correct distribution, i.e. a distribution of particle velocities for each
particle size. Specifically, the elongated shapes of dust coma isophotes require the
existence of a substantial population of small but slow particles which must be produced
by the fragmentation of initially larger particles. ‘t

17



“1omos a1 18 un{ 000‘0p1 1n0qe 01 spuodsarios sfewt arenbs oy Jo 93pa YL, "uor3oI UONRISI00E Y UMM uoneluNSely

sponred woiy 10adxa S suo az1s dponred ut peads Jo pupy 3 SORUIW me[-1omod Y], ‘Iejnoad 001 Are saj0ydost ayy G| UBY SSI[
SON[EA JOJ SEAISYM “BIEp 31 uBy) PaIESuol2 aIow yonw are sajoydost Ay (sdurexs 1oy 7) ST uey Io8re sonfeA 10 ‘¢°1 2q 01 USYE

d 1o10urered sy (1M 1X21 3 UT PIsSNOSIP me] Jomod S 01 SUTPI00OE PANGLISTPAI Are sa[onIed AIYM [3pow uoneusw eIy SUSLUNY
oy st o[pprwt o uf “projoqered € uryim satoydost renond paonpoid Yorym 301008 1utod JOJTAl PUe 99R[[BAN Y1 WIOLJ JUSIJJIP

yonw 10U $}00] dew [[RISA0 ) A[EI[D UONEIS[390. amssaid uonerper 01 AJS0[IA [RUTIL) O] JZIS apoured jo 20uspuodsariod
5U0-0]-2U0-01-2UO Y1 pue UONNQLASIP 3zis donred adKi-rouuey sy Suisn ,[opow prepuels, Sy) woy sFewn sures 2y} 01 SurpuodsaLiod
101d OO (POl € ST IYIL A O] “0OM] JO JOIOB] E JO STBAISIUL JE 3T SINOIU0D “(J90[0,0 QT noqe 18) 1391 Jaddn a3 premol

ST UONAMp premuns YL ‘AYSOIDOW “T'H I £q A101eA15GQ 23PNy YO Y1 1B 2d02os3a[a1 Y1aA A\ YOUl-19 Y3 PIM ‘CRET ‘T8°E 9 UO
Papi0dal A3[[eH 12Wo9 Jo dFewl Y 089 € JO 101d IMOIU0o B ST 3331 3 O, TR M [SpON uonriuswSely jo uostredwo) £ undLy

ISpPOW uonnqnsiq I9poN
1snQ piepuels uoneuswbely eled




VIIL. References

Combi, M.R. The Outflow Speed of the Coma of Halley's Comet. Jcarus 81, 41, 1989.

Combi, M.R. and W.H. Smyth. Monte Carlo Particle Trajectory Models for Neutral
Cometary Gases. I. Models and Equations. Astrophys.J. 327, 1026, 1988.

Combi, M.R. and W.H. Smyth. Monte Carlo Particle Trajectory Models for Neutral
Cometary Gases. IL. The Spatial Morphology of the Lyman-alpha Coma.
Astrophys. J. 327, 1044, 1988.

Combi, M.R. and U. Fink. Time-Dependent Aspherical Modeling of the Spatial Profiles
of Dust in Comet Halley. Bull. A. A. S. 24, 1018, 1992.

Combi, M.R. and U. Fink. P/Halley: Effects of Time-Dependent Production Rates on
Spatial Emission Profiles. Astrophys.J. (In press), 1993.

Eddington, A.S. The Envelopes of Comet Morehouse (1908c). Mon. Not. Roy. Astron.
Soc. 70, 442-458, 1910.

Ellis, T.A. and J.S. Neff. Numerical Simulation of the Emission and Motion of Neutral
and Charged Dust from P/Halley. Icarus 91, 280-296, 1991.

Fink, U., M.R. Combi and M.A. DiSanti. P/Halley: Spatial Distributions and Scale
Lengths for C2, CN, NH2 and H2O.  Astrophys. J. 383,356-371, 1991.

Finson, M.L. and R.F. Probstein. A Theory of Dust Comets. I. Model and Equations.
Astrophys. J. 154, 327-352, 1968a

Finson, M.L. and R.F. Probstein. A Theory of Dust Comets. II. Results for Comet
Arend-Roland. Astrophys. J. 154, 353-380, 1968b.

Gombosi, T.I. A Heuristic Model of the Comet Halley Dust Size Distribution. In 20th
ESLAB Symposium on the Exploration of Halley's Comet, Eds. B. Basttrick, E.J.
Rolfe, R. Reinhard, ESA SP-250 I p 167-171.

Gombosi, T.L, T.E. Cravens, and A.F. Nagy. Time-dependent Dusty Gas Dynamical
Flow Near Cometary Nuclei. Astrophys.J. 293, 328-341, 1985.

Gombosi, T.I., AF. Nagy, and T.E. Cravens. Dust and Neutral Gas Modeling of the
Inner Atmospheres of Comets. Rev. Geophys. 24, 667-700, 1986.

Haser, L. Calcul de Distribution d'Intensité Relative dans une Tet Cométaire. Mem. Soc.
Roy. Soc. Liege, Ser. 5, 12, 233-241, 1966.

Hellimich, R. and G.H. Schwehm. Prediction of Dust Particle Number Flux and Fluence
Rates for the EDA-Giotto and USSR Vega Missions to Comet Halley: A
Comparison. In Cometary Exploration, Ed. T.I. Gombosi,. Central Research
Institute for Physics, Hungarian Academy of Sciences; Budapest, IIL, p. 175-183.

19



Hoban, Susan, Michael F. A'Hearn, Peter V. Birch and Ralph Martin. Spatial Structure in
the Color of the Dust Coma of Comet P/Halley. Icarus 79, 145-158, 1989.

Huebner, W.F., D. C. Boice, H. Reitsema, W.A. Delamere, and F.L. Whipple. A Model
for the Intensity Profiles of Dust Jets Near the Nucleus of Comet Halley. Icarus
76, 78-88/

Jewitt, David and Jane Luu. A CCD Portrait of Comet P/Tempel 2. Astron.J. 97, 1766-
1790, 1990.

Keller, H.U. and R.R. Meier. A Cometary Hydrogen Model for Arbitrary Observational
Geometry. Astron. Astrophys. 23, 269-280, 1976.

Keller, H.U., et al. Comet Halley's Nucleus and Its Activity. Astron. Astrophys. 187,
807-823, 1987.

Lamy, P. L., E. Griin and J.M. Perrin. Comet P/Halley: Implications of the Mass
Distribution Function for the Photopolarimetric Properties of the Dust Coma.
Astron. Astrophys. 187, 767-773, 1987.

Marconi, M.L. and D.A. Mendis. The Atmosphere of a Dirty-clathrate Cometary
Nucleus: A Two-Phase, Multi-Fluid Model. Astrophys.J. 273, 381-396, 1983.

Mukai, S., T. Mukai and S. Kikuchi. Observations of comet P/Halley at Minimum Phase

_ Angle. Astron. Astrophys. 187, 650-652, 1987.

‘Schleicher, D.G. et al. Periodic Variations in the Activity of Comet P/Halley during the
1985/1986 Apparition. Astron.J. 100, 896-912, 1990.

Smyth, W.H., M.R. Combi and A.LF. Stewart. Analysis of the Pioneer-Venus Lyman-1
Image of the Hydrogen Coma of Comet P/Halley. Science 253, 1008-1010, 1991.

Probstein, R.F. The Dusty Gas Dynamics of Comet Heads. In Problems of
Hydrodynamics and Continuum Mechanics, p 568, Society for Industrial and
Applied Mathematics, Philadelphia,Pa., 1968.

Sekanina, Z. Distribution and Activity of Discrete Emission Areas on the Nucleus of
Periodic Comet Swift-Tuttle. Astron.J. 86, 1741-1773, 1981.

Sekanina, Z. and S.M. Larson. Coma Morphology and Dust-Emission Pattern of Periodic
Comet Halley. II. Nucleus Spin Vector and Modeling of Major Dust Features in
1910. Astron.J. 89, 1408-1418, 1984.

Wallace, L.V. and F.D. Miller. Isophote Configurations for Model Comets. Astron.J.
63,213-219, 1958.

Wallis, M.K. Dusty Gasdynamics in Real Comets. In Comets, Ed. L.L Wilkening,
University of Arizona Press; Tucson, AZ, p. 357-369.

20



APPENDIX

"Time-Dependent Aspherical Modeling of the Spatial Profiles of Dust
in Comet Halley"

by M.R. Combi and U. Fink

Division for Planetary Sciences Meeting, Munich, Germany, October 1992
Bull. A. A. S. 24, 1018.

21



ISU| 1S 1S) ZINYDIS |V
(D4SD) nuesig |eeydiy Aq suonnqiiuo)

A9jjeH lJawio0H ul 1sn( Jo
sa|ijoid [eneds ay} jo buijapop
[eouaydsy jJuspuadag-awi]




(25198 snJeaj ‘0661) ZINYIS pue yuld ‘nuesid

(289v9¢ rdv ‘0661) lues|a pue juid

(9se‘ese rdv ‘1661) Ruesia pue [quod “Yuld
wnnuuod pue ‘(aL)o “ZHN ‘NO ‘20 selyodd [eneds .

Y 00v01L - ¥ 002S X ..50¢ -2 LL 008 X 008 ue jo 008 x 081 -

BUOZIIY JO AlISI9AIUN 9yl JO 2d0DSa|a] alIS euljeleD W 9l -

uonuedde AsjjeH ayl inoybnoty} uaye) esoads oo uis-buo «

SUOIIBAISSq




"aunf 9861 O} Isn3ny CgET woj
e3129ds £o)jeH /4 ino jo Inwe sjoym 2y} Buruyurexo £q poxoid 210m Inq oansodxo sup q Ajuo Jou paurwzyop ss0m sdins

wnnuauop “(J-p~ $3303] 4q Pa[2GE|) SMOpULM WRNIQUOD INO SE [[am SE SPUEq (- Pue (- ND PUE ‘0°L0 Pue 0'g'0 2HN
,..~O ‘,O'H 9O 10j smopums woissius Jno Jo Juomaoeld o1y Suwmogs ‘[ “uer 984T uo £31feH/4 19w Jo mnnoads oney 1 “Sig

v f._..:a_ws;

0000! ~ . u 0006 > 0008
\\ N 7 N
NGt
7 7 :
7 9 % //N
\ k‘ <(:\\/l(.\/\/\(/\(.a7 ,\.\.)) s .’/z?/ S Y
! S AN N ~ ./,._, \x\
- _ | < 0009 |
& D S N
\ N NS N
7 m Nz g RN
A O AN AN
x/e/ | 277)\;\/\, \l 7/“/2 s /.5._,.3_ o A
/ (
°HN 0'6‘0 0‘9'0 0°2°0 0'8‘0 0'6'0 o'or'o] f} o
| J | g‘..\
£
“
/!

(@)

Ky1suaju) aAlo|ay



IO pue YN 4q 1023x5 J3559] 1RYMIWOS & 0) pue djjoid wnnunuos
ST Y2IB 3Y) £q panqyxa uns o) premo) Anomwdse Suons ai s1 Ayuomajou Ajperadsy -ojqeiapisucd sie ¢z yoJep
PUE $'T YJe USamIaq $3[yoid oY) ur S30UAIRMNP 4L IYB1s WONO] JE UMOYS ST 669 S Jeis uosuedwod wouy ojyosd
Buraas Jej[9)s v Iy8u S 0) s1 UONVINP premung ‘Jre) oY) Suope PIUBITe sem IS YL, “MIS 341 JO Pua 31} JE S[2A9] jeudis
131100 341 Yim umoys ase sajoud [y uyw/sjunod fenba 0} pajess are saads Yoe3 1o s0d Sy, "sojep uoneasasqo

RO pajedipul JABY M PRI U0 (986T JAYRIRIYDS pue SHA) Aoj[eH/d Jo samnoy3y paiejodenxs a3 smoys jasur ay L
"wRLXewWw SAINY31] € Jeau §7 YoIeN pue

‘wnwgut 2AIN)YBy € Jeou ¢ yorey 9861 10 sapyoad fenyeds Jouostredwo) 9 "Big

(925-240) J3)uad WOy 3duDySIP (985-230) J3judd wo1y 3dUDISIP

(wy cOI) Jajusd wouy BduDisip (WX £O1) JaIUB2 Wouy BuysIp
os 09 op 02 0 02- ob- 09- ob 0¢ 0 02- Oob- Ob 02
| I X T " T T T T T T3 S T T T JAY 3y
]
G'10 U040 S10 YION 610 YOON
240 . . 240 |\
5°20 Yoy m.wO:,&h: . G20 Yo10i
@ -—
sj1j0.d . 2
bujaas wnnutuo) HN
STTET
¢°10 yosop~" 5°10 yosow—"
§°20 Yoo C'20 Y210
§72 WsoN 5861
LINLELS
6-— Q —
g
sz
i J 1 1 1 1 1 A i 1 1 1 @ 1 1
08 09 Ov 0¢ 0 02- Ov- 09- 09 (0] (074 0 0e- ov- 09- QO8B-

/ 51unod dAlp[as

ulw

UIw/ 5{Un0d 3A1D(3)



sdew ‘sa|youd jeneds <== Ljs ay} jo auejd sy} uo payosloid
puUb e ul suonnquIuod (Alisuap pue) ssauybq s1094109 -

ainssaid uoneipes Yyum g-¢ Ul siiqo ajoied o11uad0loH «

(092 ‘26 snied] ‘T661) uewplad pue Iquod
(8001 ‘€Sg 92U319S “L66L) HEMalIS pue Iquo) ‘YlAws
(bvoL ‘22¢ rdv ‘aggel) "

(9201 ‘22€ rdv ‘eggél) wiAws pue iIquiod
BWOI H 24} 10} apo9 Al103d3dled) ojue) ajuopy 9yl uo paseq

yiomawe.d disegq |

[SPOIN BWGY 1Shd




(2661) uld pue iqwo) Aq (dL)O pue ZHN ‘ND ‘2D jo
sisAjeue ajyoid [eneds woly aAINNYLI (0661) I€ 19 18YIIBIYIS 8Y)
0} uol}9a1109 apnydwe pue Be| aseyd -- uoneea gipouad Aep-2¢°2 «

uoljeyuad-1sod 6L-4"
(uonesunwwo? areAud ‘1ayoiv|yoss) uolayuad-aid gz-1~0°

Aoualoije ainssasd uoneipeld 1o} (€86 1) WYaMUydS pue Yojwj|ay -
Aduaioiyye bulieness Wb 104 (2861) "8 10 1IN -

(uonenojes s1weuApseb-Aisnp o3 uonewixoidde sjqeuoseau)
S3I1ID0]AA |RUIWLIB) 10} poylaw (P86 L) UOSIe] pue BUIURYDS -

g- Wo B (e - “e)/e v°1- 22 = (e)d :Ausuap isnp (2861) I8 10 Awer -
uonnquisip azis (9g61) Isoquiom -

sojebaibbe snolod xiep - sajeoiis jeowouodise :saisAyd isng Il

JOPO BWiO) 15NQ




asbuyd

00

i G¢

Gl

90—

—¥0-

— %0

90

O Bo7 pyaQ



100X Antisunward

L

100% Sunward

100

March 2.5 (BO% Sunward + 20% Antisunward)

5% Antisunward)

S’F(SS% Sunward + 4

March 1.

100




s9jyoid piemunsijue pue piemuns ajesedas Apnis o} -
suonnqusip jesusydsjway pajybiom apisiybiu pue apisAeqg

.Jjeubis,, 1o uonebedoid ~ 3snp Jo AlI00jOA jelped -
aseyd pue apnjijdwe uoneleA sipouad 1sa) 0} -
sojiyold pabesaae piemunsiue/piemuns aledwo) L

(9861 ‘s"Z pue g°| yosey) suoneinbyuo)d |apow 1sna




93+38° L Go+30° L va+30° 1 €2+38° |

TTT T T T LI I I S LIS A S la+38° L
- ]

B ISPON Isng R

[ Juepuadeg-eun) -

- 4 2o+3e° )
- - €e@+30°1
i SUolBAleSqO ]

C b -

-  ve+3s’1

(8
8 oooo..c T huosmep -
s \ no " -
°

C ¢ Ydiepn ° » ]

" D -

.._.... 1 1 log e v 0 3 ._......o_ 1 3

SP+30° |



9g+38° 1 Ca+3d° 1 va+30° | £€8+39g- ca+38°L ¢a+ws "1 £3+38° 1

ITTT T 1T 1 T [ITTT T 11 T | RABLEL L L L) T ITTT T T I T Y T T r 20+38° 1
~ |9pOW Isng 1r -
I luepuedeg-ew)L 1tk -
F 1k :
~ JE pismung — < €0+30° |
[ 1r -
" piemuns =~ J[ piemunspuy .
- 1E .
) % r 3 vo+30' 1
‘
L +, _
. %" X -
- plemunspuy " d1L |
i ~——SUO|IBAIaSqQD i . -
3 o0y 3k . -
' % 1 - G@+38° L
0
Of 0
" + 0 4 L jlepopi IsnQg .\ A
i ' Juepuedeqg-ewiLL
° - B -
[ 2 Yydien + 0 1t -
C * 1 1yosen -
1 TH NI A 1 lis o 2 g .. 1 laa g 1 1 3 n.:-... 1 1 it 1t 3 1 1 Yi102 2 1 4 A - 99+32" |



Isnp pajoale piemuns Ajjepuassa yuasaidal aanaybi ay) jo
suoibai 1eybiy ay} 1eyl pue aoinos [eoueyds ay} jo [oAd] 9y}
Jussaidal uoneuea Aep-2¢°2 ayl Jo sybnody ayl 1eyy a|qISsod «

snp
JOo uonoale psemunsiue Jueoyiubis e asinbai sepyoid jeneds -

AnswuwAse Jabae| ~ o 19ybiy <== uojieleA ojponad ay)
JO [9A83] 8y} yum AleA 0) swiaas 1awo9 ay) jo Aylouaydse ayj -

(1ustayip Jeymawos aq Aew wWnNuUiUoO9 pue

sajoads ajeledas jo Answoloyd ayj ybnoyyje) 921n0S ay} je

1snp pue seb yjoq suie|dxa ajes uononpoad uonelea
olpouad Aep-2¢°2 ay} jo eseyd pue apnjjjdwe awes ay|

siinsey




